3.10 \(\int \frac{1+x^4}{1+3 x^4+x^8} \, dx\)

Optimal. Leaf size=451 \[ -\frac{\sqrt [4]{3+\sqrt{5}} \log \left (2 x^2-2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+\sqrt{2 \left (3-\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3+\sqrt{5}} \log \left (2 x^2+2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+\sqrt{2 \left (3-\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3-\sqrt{5}} \log \left (2 x^2-2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+\sqrt{2 \left (3+\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3-\sqrt{5}} \log \left (2 x^2+2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+\sqrt{2 \left (3+\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3+\sqrt{5}} \tan ^{-1}\left (1-\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3+\sqrt{5}} \tan ^{-1}\left (\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}+1\right )}{2\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3-\sqrt{5}} \tan ^{-1}\left (1-\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3-\sqrt{5}} \tan ^{-1}\left (\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}+1\right )}{2\ 2^{3/4} \sqrt{5}} \]

[Out]

-((3 + Sqrt[5])^(1/4)*ArcTan[1 - (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)])/(2*2^(3/4)*Sqrt[5]) + ((3 + Sqrt[5])^(1/4)*
ArcTan[1 + (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)])/(2*2^(3/4)*Sqrt[5]) - ((3 - Sqrt[5])^(1/4)*ArcTan[1 - (2^(3/4)*x)
/(3 + Sqrt[5])^(1/4)])/(2*2^(3/4)*Sqrt[5]) + ((3 - Sqrt[5])^(1/4)*ArcTan[1 + (2^(3/4)*x)/(3 + Sqrt[5])^(1/4)])
/(2*2^(3/4)*Sqrt[5]) - ((3 + Sqrt[5])^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] - 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2*x^2])/
(4*2^(3/4)*Sqrt[5]) + ((3 + Sqrt[5])^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] + 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2*x^2])/(
4*2^(3/4)*Sqrt[5]) - ((3 - Sqrt[5])^(1/4)*Log[Sqrt[2*(3 + Sqrt[5])] - 2*(2*(3 + Sqrt[5]))^(1/4)*x + 2*x^2])/(4
*2^(3/4)*Sqrt[5]) + ((3 - Sqrt[5])^(1/4)*Log[Sqrt[2*(3 + Sqrt[5])] + 2*(2*(3 + Sqrt[5]))^(1/4)*x + 2*x^2])/(4*
2^(3/4)*Sqrt[5])

________________________________________________________________________________________

Rubi [A]  time = 0.406547, antiderivative size = 451, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {1420, 211, 1165, 628, 1162, 617, 204} \[ -\frac{\sqrt [4]{3+\sqrt{5}} \log \left (2 x^2-2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+\sqrt{2 \left (3-\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3+\sqrt{5}} \log \left (2 x^2+2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+\sqrt{2 \left (3-\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3-\sqrt{5}} \log \left (2 x^2-2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+\sqrt{2 \left (3+\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3-\sqrt{5}} \log \left (2 x^2+2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+\sqrt{2 \left (3+\sqrt{5}\right )}\right )}{4\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3+\sqrt{5}} \tan ^{-1}\left (1-\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3+\sqrt{5}} \tan ^{-1}\left (\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}+1\right )}{2\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3-\sqrt{5}} \tan ^{-1}\left (1-\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3-\sqrt{5}} \tan ^{-1}\left (\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}+1\right )}{2\ 2^{3/4} \sqrt{5}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^4)/(1 + 3*x^4 + x^8),x]

[Out]

-((3 + Sqrt[5])^(1/4)*ArcTan[1 - (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)])/(2*2^(3/4)*Sqrt[5]) + ((3 + Sqrt[5])^(1/4)*
ArcTan[1 + (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)])/(2*2^(3/4)*Sqrt[5]) - ((3 - Sqrt[5])^(1/4)*ArcTan[1 - (2^(3/4)*x)
/(3 + Sqrt[5])^(1/4)])/(2*2^(3/4)*Sqrt[5]) + ((3 - Sqrt[5])^(1/4)*ArcTan[1 + (2^(3/4)*x)/(3 + Sqrt[5])^(1/4)])
/(2*2^(3/4)*Sqrt[5]) - ((3 + Sqrt[5])^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] - 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2*x^2])/
(4*2^(3/4)*Sqrt[5]) + ((3 + Sqrt[5])^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] + 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2*x^2])/(
4*2^(3/4)*Sqrt[5]) - ((3 - Sqrt[5])^(1/4)*Log[Sqrt[2*(3 + Sqrt[5])] - 2*(2*(3 + Sqrt[5]))^(1/4)*x + 2*x^2])/(4
*2^(3/4)*Sqrt[5]) + ((3 - Sqrt[5])^(1/4)*Log[Sqrt[2*(3 + Sqrt[5])] + 2*(2*(3 + Sqrt[5]))^(1/4)*x + 2*x^2])/(4*
2^(3/4)*Sqrt[5])

Rule 1420

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ
[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && GtQ[b^2 - 4*a*c, 0]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1+x^4}{1+3 x^4+x^8} \, dx &=\frac{1}{10} \left (5-\sqrt{5}\right ) \int \frac{1}{\frac{3}{2}-\frac{\sqrt{5}}{2}+x^4} \, dx+\frac{1}{10} \left (5+\sqrt{5}\right ) \int \frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}+x^4} \, dx\\ &=\frac{\int \frac{\sqrt{3-\sqrt{5}}-\sqrt{2} x^2}{\frac{3}{2}-\frac{\sqrt{5}}{2}+x^4} \, dx}{2 \sqrt{10}}+\frac{\int \frac{\sqrt{3-\sqrt{5}}+\sqrt{2} x^2}{\frac{3}{2}-\frac{\sqrt{5}}{2}+x^4} \, dx}{2 \sqrt{10}}+\frac{\int \frac{\sqrt{3+\sqrt{5}}-\sqrt{2} x^2}{\frac{3}{2}+\frac{\sqrt{5}}{2}+x^4} \, dx}{2 \sqrt{10}}+\frac{\int \frac{\sqrt{3+\sqrt{5}}+\sqrt{2} x^2}{\frac{3}{2}+\frac{\sqrt{5}}{2}+x^4} \, dx}{2 \sqrt{10}}\\ &=\frac{\int \frac{1}{\sqrt{\frac{1}{2} \left (3-\sqrt{5}\right )}-\sqrt [4]{2 \left (3-\sqrt{5}\right )} x+x^2} \, dx}{4 \sqrt{5}}+\frac{\int \frac{1}{\sqrt{\frac{1}{2} \left (3-\sqrt{5}\right )}+\sqrt [4]{2 \left (3-\sqrt{5}\right )} x+x^2} \, dx}{4 \sqrt{5}}+\frac{\int \frac{1}{\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )}-\sqrt [4]{2 \left (3+\sqrt{5}\right )} x+x^2} \, dx}{4 \sqrt{5}}+\frac{\int \frac{1}{\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )}+\sqrt [4]{2 \left (3+\sqrt{5}\right )} x+x^2} \, dx}{4 \sqrt{5}}-\frac{\sqrt [4]{3+\sqrt{5}} \int \frac{\sqrt [4]{2 \left (3-\sqrt{5}\right )}+2 x}{-\sqrt{\frac{1}{2} \left (3-\sqrt{5}\right )}-\sqrt [4]{2 \left (3-\sqrt{5}\right )} x-x^2} \, dx}{4\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{3+\sqrt{5}} \int \frac{\sqrt [4]{2 \left (3-\sqrt{5}\right )}-2 x}{-\sqrt{\frac{1}{2} \left (3-\sqrt{5}\right )}+\sqrt [4]{2 \left (3-\sqrt{5}\right )} x-x^2} \, dx}{4\ 2^{3/4} \sqrt{5}}-\frac{\int \frac{\sqrt [4]{2 \left (3+\sqrt{5}\right )}+2 x}{-\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )}-\sqrt [4]{2 \left (3+\sqrt{5}\right )} x-x^2} \, dx}{4 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}-\frac{\int \frac{\sqrt [4]{2 \left (3+\sqrt{5}\right )}-2 x}{-\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )}+\sqrt [4]{2 \left (3+\sqrt{5}\right )} x-x^2} \, dx}{4 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}\\ &=-\frac{\sqrt [4]{3+\sqrt{5}} \log \left (\sqrt{2 \left (3-\sqrt{5}\right )}-2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+2 x^2\right )}{4\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3+\sqrt{5}} \log \left (\sqrt{2 \left (3-\sqrt{5}\right )}+2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+2 x^2\right )}{4\ 2^{3/4} \sqrt{5}}-\frac{\log \left (\sqrt{2 \left (3+\sqrt{5}\right )}-2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+2 x^2\right )}{4 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}+\frac{\log \left (\sqrt{2 \left (3+\sqrt{5}\right )}+2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+2 x^2\right )}{4 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3-\sqrt{5}\right )}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3-\sqrt{5}\right )}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}\\ &=-\frac{\tan ^{-1}\left (1-\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3-\sqrt{5}\right )}}+\frac{\tan ^{-1}\left (1+\frac{2^{3/4} x}{\sqrt [4]{3-\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3-\sqrt{5}\right )}}-\frac{\tan ^{-1}\left (1-\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}+\frac{\tan ^{-1}\left (1+\frac{2^{3/4} x}{\sqrt [4]{3+\sqrt{5}}}\right )}{2 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}-\frac{\sqrt [4]{3+\sqrt{5}} \log \left (\sqrt{2 \left (3-\sqrt{5}\right )}-2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+2 x^2\right )}{4\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{3+\sqrt{5}} \log \left (\sqrt{2 \left (3-\sqrt{5}\right )}+2 \sqrt [4]{2 \left (3-\sqrt{5}\right )} x+2 x^2\right )}{4\ 2^{3/4} \sqrt{5}}-\frac{\log \left (\sqrt{2 \left (3+\sqrt{5}\right )}-2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+2 x^2\right )}{4 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}+\frac{\log \left (\sqrt{2 \left (3+\sqrt{5}\right )}+2 \sqrt [4]{2 \left (3+\sqrt{5}\right )} x+2 x^2\right )}{4 \sqrt{5} \sqrt [4]{2 \left (3+\sqrt{5}\right )}}\\ \end{align*}

Mathematica [C]  time = 0.0141974, size = 55, normalized size = 0.12 \[ \frac{1}{4} \text{RootSum}\left [\text{$\#$1}^8+3 \text{$\#$1}^4+1\& ,\frac{\text{$\#$1}^4 \log (x-\text{$\#$1})+\log (x-\text{$\#$1})}{2 \text{$\#$1}^7+3 \text{$\#$1}^3}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^4)/(1 + 3*x^4 + x^8),x]

[Out]

RootSum[1 + 3*#1^4 + #1^8 & , (Log[x - #1] + Log[x - #1]*#1^4)/(3*#1^3 + 2*#1^7) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 42, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}+3\,{{\it \_Z}}^{4}+1 \right ) }{\frac{ \left ({{\it \_R}}^{4}+1 \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}+3\,{{\it \_R}}^{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+1)/(x^8+3*x^4+1),x)

[Out]

1/4*sum((_R^4+1)/(2*_R^7+3*_R^3)*ln(x-_R),_R=RootOf(_Z^8+3*_Z^4+1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4} + 1}{x^{8} + 3 \, x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(x^8+3*x^4+1),x, algorithm="maxima")

[Out]

integrate((x^4 + 1)/(x^8 + 3*x^4 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.62415, size = 3098, normalized size = 6.87 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(x^8+3*x^4+1),x, algorithm="fricas")

[Out]

1/80*sqrt(10)*(2*sqrt(5) + 6)^(3/4)*sqrt(sqrt(5) + 3)*(sqrt(5) - 3)*arctan(1/80*sqrt(10)*sqrt(20*x^2 + sqrt(10
)*(sqrt(5)*sqrt(2)*x - 5*sqrt(2)*x)*(2*sqrt(5) + 6)^(1/4) - 5*sqrt(2*sqrt(5) + 6)*(sqrt(5) - 3))*(2*sqrt(5) +
6)^(5/4)*sqrt(sqrt(5) + 3)*(sqrt(5) - 2) + 1/40*sqrt(10)*(2*sqrt(5)*x - 5*x)*(2*sqrt(5) + 6)^(5/4)*sqrt(sqrt(5
) + 3) - 1/8*(sqrt(5)*sqrt(2) - 3*sqrt(2))*sqrt(2*sqrt(5) + 6)*sqrt(sqrt(5) + 3)) + 1/80*sqrt(10)*(2*sqrt(5) +
 6)^(3/4)*sqrt(sqrt(5) + 3)*(sqrt(5) - 3)*arctan(1/80*sqrt(10)*sqrt(20*x^2 - sqrt(10)*(sqrt(5)*sqrt(2)*x - 5*s
qrt(2)*x)*(2*sqrt(5) + 6)^(1/4) - 5*sqrt(2*sqrt(5) + 6)*(sqrt(5) - 3))*(2*sqrt(5) + 6)^(5/4)*sqrt(sqrt(5) + 3)
*(sqrt(5) - 2) + 1/40*sqrt(10)*(2*sqrt(5)*x - 5*x)*(2*sqrt(5) + 6)^(5/4)*sqrt(sqrt(5) + 3) + 1/8*(sqrt(5)*sqrt
(2) - 3*sqrt(2))*sqrt(2*sqrt(5) + 6)*sqrt(sqrt(5) + 3)) - 1/80*sqrt(10)*(sqrt(5) + 3)*sqrt(-sqrt(5) + 3)*(-2*s
qrt(5) + 6)^(3/4)*arctan(1/80*sqrt(10)*sqrt(20*x^2 + sqrt(10)*(sqrt(5)*sqrt(2)*x + 5*sqrt(2)*x)*(-2*sqrt(5) +
6)^(1/4) + 5*(sqrt(5) + 3)*sqrt(-2*sqrt(5) + 6))*(sqrt(5) + 2)*sqrt(-sqrt(5) + 3)*(-2*sqrt(5) + 6)^(5/4) - 1/4
0*(sqrt(10)*(2*sqrt(5)*x + 5*x)*(-2*sqrt(5) + 6)^(5/4) + 5*(sqrt(5)*sqrt(2) + 3*sqrt(2))*sqrt(-2*sqrt(5) + 6))
*sqrt(-sqrt(5) + 3)) - 1/80*sqrt(10)*(sqrt(5) + 3)*sqrt(-sqrt(5) + 3)*(-2*sqrt(5) + 6)^(3/4)*arctan(1/80*sqrt(
10)*sqrt(20*x^2 - sqrt(10)*(sqrt(5)*sqrt(2)*x + 5*sqrt(2)*x)*(-2*sqrt(5) + 6)^(1/4) + 5*(sqrt(5) + 3)*sqrt(-2*
sqrt(5) + 6))*(sqrt(5) + 2)*sqrt(-sqrt(5) + 3)*(-2*sqrt(5) + 6)^(5/4) - 1/40*(sqrt(10)*(2*sqrt(5)*x + 5*x)*(-2
*sqrt(5) + 6)^(5/4) - 5*(sqrt(5)*sqrt(2) + 3*sqrt(2))*sqrt(-2*sqrt(5) + 6))*sqrt(-sqrt(5) + 3)) - 1/80*sqrt(10
)*sqrt(2)*(2*sqrt(5) + 6)^(1/4)*log(20*x^2 + sqrt(10)*(sqrt(5)*sqrt(2)*x - 5*sqrt(2)*x)*(2*sqrt(5) + 6)^(1/4)
- 5*sqrt(2*sqrt(5) + 6)*(sqrt(5) - 3)) + 1/80*sqrt(10)*sqrt(2)*(2*sqrt(5) + 6)^(1/4)*log(20*x^2 - sqrt(10)*(sq
rt(5)*sqrt(2)*x - 5*sqrt(2)*x)*(2*sqrt(5) + 6)^(1/4) - 5*sqrt(2*sqrt(5) + 6)*(sqrt(5) - 3)) + 1/80*sqrt(10)*sq
rt(2)*(-2*sqrt(5) + 6)^(1/4)*log(20*x^2 + sqrt(10)*(sqrt(5)*sqrt(2)*x + 5*sqrt(2)*x)*(-2*sqrt(5) + 6)^(1/4) +
5*(sqrt(5) + 3)*sqrt(-2*sqrt(5) + 6)) - 1/80*sqrt(10)*sqrt(2)*(-2*sqrt(5) + 6)^(1/4)*log(20*x^2 - sqrt(10)*(sq
rt(5)*sqrt(2)*x + 5*sqrt(2)*x)*(-2*sqrt(5) + 6)^(1/4) + 5*(sqrt(5) + 3)*sqrt(-2*sqrt(5) + 6))

________________________________________________________________________________________

Sympy [A]  time = 1.06069, size = 24, normalized size = 0.05 \begin{align*} \operatorname{RootSum}{\left (40960000 t^{8} + 19200 t^{4} + 1, \left ( t \mapsto t \log{\left (25600 t^{5} + 16 t + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+1)/(x**8+3*x**4+1),x)

[Out]

RootSum(40960000*_t**8 + 19200*_t**4 + 1, Lambda(_t, _t*log(25600*_t**5 + 16*_t + x)))

________________________________________________________________________________________

Giac [A]  time = 1.35736, size = 342, normalized size = 0.76 \begin{align*} \frac{1}{40} \,{\left (i + 1\right )} \sqrt{5 \, \sqrt{5} - 5} \log \left (130 \,{\left (i + 1\right )} x + 130 \, i \sqrt{\sqrt{5} + 1}\right ) - \frac{1}{40} \,{\left (i + 1\right )} \sqrt{5 \, \sqrt{5} - 5} \log \left (130 \,{\left (i + 1\right )} x - 130 \, i \sqrt{\sqrt{5} + 1}\right ) - \frac{1}{40} \,{\left (i - 1\right )} \sqrt{5 \, \sqrt{5} - 5} \log \left (130 \,{\left (i + 1\right )} x + 130 \, \sqrt{\sqrt{5} + 1}\right ) + \frac{1}{40} \,{\left (i - 1\right )} \sqrt{5 \, \sqrt{5} - 5} \log \left (130 \,{\left (i + 1\right )} x - 130 \, \sqrt{\sqrt{5} + 1}\right ) + \frac{1}{40} \,{\left (i + 1\right )} \sqrt{5 \, \sqrt{5} + 5} \log \left (50 \,{\left (i + 1\right )} x + 50 \, i \sqrt{\sqrt{5} - 1}\right ) - \frac{1}{40} \,{\left (i + 1\right )} \sqrt{5 \, \sqrt{5} + 5} \log \left (50 \,{\left (i + 1\right )} x - 50 \, i \sqrt{\sqrt{5} - 1}\right ) - \frac{1}{40} \,{\left (i - 1\right )} \sqrt{5 \, \sqrt{5} + 5} \log \left (50 \,{\left (i + 1\right )} x + 50 \, \sqrt{\sqrt{5} - 1}\right ) + \frac{1}{40} \,{\left (i - 1\right )} \sqrt{5 \, \sqrt{5} + 5} \log \left (50 \,{\left (i + 1\right )} x - 50 \, \sqrt{\sqrt{5} - 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(x^8+3*x^4+1),x, algorithm="giac")

[Out]

1/40*(i + 1)*sqrt(5*sqrt(5) - 5)*log(130*(i + 1)*x + 130*i*sqrt(sqrt(5) + 1)) - 1/40*(i + 1)*sqrt(5*sqrt(5) -
5)*log(130*(i + 1)*x - 130*i*sqrt(sqrt(5) + 1)) - 1/40*(i - 1)*sqrt(5*sqrt(5) - 5)*log(130*(i + 1)*x + 130*sqr
t(sqrt(5) + 1)) + 1/40*(i - 1)*sqrt(5*sqrt(5) - 5)*log(130*(i + 1)*x - 130*sqrt(sqrt(5) + 1)) + 1/40*(i + 1)*s
qrt(5*sqrt(5) + 5)*log(50*(i + 1)*x + 50*i*sqrt(sqrt(5) - 1)) - 1/40*(i + 1)*sqrt(5*sqrt(5) + 5)*log(50*(i + 1
)*x - 50*i*sqrt(sqrt(5) - 1)) - 1/40*(i - 1)*sqrt(5*sqrt(5) + 5)*log(50*(i + 1)*x + 50*sqrt(sqrt(5) - 1)) + 1/
40*(i - 1)*sqrt(5*sqrt(5) + 5)*log(50*(i + 1)*x - 50*sqrt(sqrt(5) - 1))